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A water transport model for the creep response 
of the intervertebral disc 
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Time-dependence in the mechanical response of the intervertebral disc has previously been 
shown to arise from the transport of water out of the disc. A creep model has been devised 
which describes the water transport in terms of the disc structure. This model assumes that the 
f low of water is the result of a pressure gradient across the cartilage end-plates, caused by an 
externally applied stress. The fluid transport properties of the cartilage determine the f low rate. 
Several cases are studied; those that best fit the experimental results use either a strain- 
dependent or a time- and strain-dependent pressure gradient. The permeability of the disc 
system is in the range (0.20 to 0.85) x 10 -~7 m 4 N ~ sec -~ and depends on the stress level. 
These values are lower than those reported in the literature for articular cartilage, but this can 
be explained in part by the differences in water content of the cartilage types. Permeability is 
found to decrease with applied stress, and both the strain- and time-dependence parameters 
increase in magnitude with stress. It can be shown that the analytical models of the creep 
response of the disc are analogous to three- and four-parameter viscoelastic models that 
employ springs and dashpots. 

1. In troduc t ion  
Viscoelastic models employing springs and dashpots 
are frequently used to describe time-dependent relax- 
ation processes in biological materials. However, the 
elements of these models are not directly related to the 
structure of the material. In order to understand the 
relationship between the macroscopically measured 
mechanical properties and the hierarchical structure 
of the biological system, it is necessary to develop 
physiologically meaningful models. 

It was shown previously that compressive stress 
relaxation of the intervertebral disc occurs by loss of 
water from the disc structure [1]. This mechanism 
differs fundamentally from the molecular reorganiz- 
ation normally associated with the relaxation behav- 
iour of materials, but is similar to that of articular 
cartilage, which also relaxes by means of water trans- 
port through cartilaginous material [2]. Numerous 
studies have characterized the compressive creep 
behaviour of articular cartilage in terms of a transport 
coefficient, usually the permeability [3-5]. The disc 
and articular cartilage systems are not completely 
analogous, however. Indentation testing of cartilage 
results in compaction of the cartilage, which decreases 
in thickness as water is squeezed out at the free surface 
[6], much as stepping on wet sand forces water to the 
surface. In comparison, the disc is tested in com- 
pression as a system; the cartilage end-plates are con- 
sidered to be essentially rigid, porous structures that 
do not deform, while the compressed disc acts as a 
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pump to force water through the pores of the cartilage 
into the cancellous bone of the vertebral bodies. 
Consequently, in order to describe the time-dependent 
response of the disc, it is necessary to formulate new 
models that are derived specifically from the structure 
of the intervertebral disc system. 

2. Creep models 
2.1 Anatomical basis 
The intervertebral disc is modelled as a system consist- 
ing of the disc together with the cartilage end-plates 
attached to the vertebral bodies [7]. The disc is deform- 
able and, when a compressive load is applied, the 
annulus fibrosus bulges outwards. A restoring force 
resisting this bulging is provided by the collagen fibres 
of the lamellae that comprise the annulus. These fibres 
are loaded in tension when the disc is compressed [l]. 
This compression creates a pressure within the disc, 
which is the driving force for water to flow through the 
cartilage end-plates and into the vertebral bodies. From 
there, the water is transported by the circulatory sys- 
tem away from the vertebrae. The strain in the lamellae 
of the annulus is relieved by the decrease in volume of 
the disc as water flows out. This model is shown 
schematically in Fig. 1. In the following analysis 
the cartilage end-plates and vertebral bone are 
assumed to be incompressible. It is also assumed that 
the permeability of the cartilage controls the rate at 
which water is expressed from the compressed disc. 
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Figure 1 Creep model of  the intervertebral 
disc. 

2 .2 .  A n a l y t i c a l  m o d e l  

It is assumed that compressive creep is due to the flow 
of water out of the disc as the result of the pressure 
gradient across the cartilage end-plates caused by an 
externally applied stress. The hydrostatic pressure 
within the disc, Pd, is not necessarily equal to the 
externally applied stress, a0, neither is is necessarily a 
constant. Both the strain- and the time-dependences 
of the pressure gradient across the cartilage are con- 
sidered. Within the disc the hydrostatic pressure is 
assumed to be homogeneous. 

The relationship between the volumetric flux and 
the pressure gradient is modelled by Darcy flow in a 
quasi-steady-state system. Laminar flow and a linear 
pressure gradient across the cartilage end-plates are 
assumed. The Darcy equation is applied to the total 
volume flux from the disc through two cartilage 
end-plates (above and below the disc) having a per- 
meability coefficient K. The relationship between the 
hydrostatic pressure, Pd, and the strain, e(t), is given 
by 

d[e(t) - %] 2 K  
q = h~ dt - L Pa (1) 

where h~ is the height of the disc before testing (m), e(t) 
is the strain, q is the volume flux (m 3 m 2 s e c -  1 ), t is the 
time (sec), eo is the strain at t = 0, Pd is the pressure 
in the disc (Nm-2), L is the thickness of the barrier 
layer, in this case the cartilage (m) and K is the per- 
meability constant (m 4 N-l  sec l). 

Three cases are considered for the hydrostatic press- 
ure in the disc. 

Case I: Constant hydrostatic pressure. 
Case II: Strain-dependent hydrostatic pressure. 
Case III: Strain- and time-dependent hydrostatic 

pressure. 

Case I. Cons tan t  pressure 
In case I the hydrostatic pressure within the disc, Pd, 
is assumed to be constant for the duration of the creep 
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experiment and equal to the difference between the 
applied stress, a0 (N m-2), and the osmotic pressure in 
the disc, P0 (Nm 2), as shown by 

Pa = a 0 -  P0 (2) 

This expression for the hydrostatic pressure is substi- 

EO 

[Q) P = Or  - P o  

Time 

E~ 

EO 

Ibl P = a. - Po - Z~ (~(e)-~o) 

Time 

~ in t  

tO 

~ D 

p = Or -Po - D(~(t)-co) + G~ (c) 
Time 

Figure 2 Three cases of  the creep model. (a) Case I: constant  
pressure gradient; (b) case II: strain-dependent pressure gradient 
and (c) case III: time- and strain-dependent pressure gradient. 



tuted into Equation 1 and, upon integration, gives a 
linear relationship between strain and time: 

2(0-0 Po)K 
~(t) = < + t (3) 

hlL 

Equation 3 predicts a linear creep curve (Fig. 2a) and 
the permeability, K, can be calculated from the slope. 
Since the experimental creep data are not linear, it is 
necessary to consider cases where the hydrostatic 
pressure is not constant. 

Case II. Strain- dependent pressure 
Case II considers the increase in osmotic pressure as 
the amount of water in the disc decreases. This increase 
in osmotic pressure is assumed to be linear with strain, 
and 

Pd = Oo -- {P0 + D[8(t) -- ~01} (4) 

gives the hydrostatic pressure within the disc where 
the system parameter D (Nm 2) represents the mag- 
nitude of  the strain-dependence. Substitution of this 
relationship into Equation I and integration yields the 
strain as a function of  exponential time: 

( 2  ,y1 e(t) = ~0 + ~ 1 - exp h-~ ] J  (5) 

According to this equation, the strain reaches an 
asymptotic value, ~ ,  as the exponential term becomes 
negligible at long times (Fig. 2b), and Equation 5 
reduces to 

a0 - P0 
D - - -  (6) 

8r_  - -  8 0 

The system parameter D can be calculated from 
Equation 6. Equation 6 is substituted into Equation 5 
to yield 

- I n  s(/) - a~ 2KD - t (7)  
~o - s~ hiL 

Using the value of D obtained from Equation 6, the 
permeability, K, is calculated from the slope of the 
plot of - In {[~(t) - s~]/(~o - ~,_)} against t. 

Case IlL Time- and strain-dependent 
pressure 
Although it will be seen that case II adequately 
describes the experimental observations, it does not 
take into consideration the probability that the retrac- 
tile force exerted by the collagen fibres in the lamellae 
of the annulus fibrosis is time-dependent. The well- 
known viscoelastic character of collagen fibres [8] 
would introduce certain features into the creep curve 
that could not be confirmed in this study due to the 
limitations of  the experiment. As indicated above, case 
II requires that the strain reaches an asymptotic value 
at long times. It is possible that the disc does not 
exhibit such behaviour. It is also possible that the disc 
may exhibit non-recoverable strain when unloaded; 
although this could not be determined from in vitro 
measurements on the open system. Both of  these 
phenomena can be accommodated by adding a linear, 
time-dependent term to the hydrostatic pressure. This 
is illustrated in Equation 8, where the system parameter 

G (N m '2 sec- ~), represents the magnitude of the time- 
dependence: 

P,I = 0-o - {P0 + D[g(t) - ~0] - Gt} (8) 

Substituting Equation 8 into Equation 1 and integrat- 
ing yields 

/ P0 I]~i L G 
4 0  = so + ( ~o 

D 2KD 2 J \ 

x 1 - exp h~L ]J + ~ t  (9) 

which has both an exponential and a linear depen- 
dence of strain on time (Fig. 2c). 

At long times the exponential term in Equation 9 is 
negligible and the relationship between strain and 
time is linear with a slope of  G/D. The intercept of this 
linear region extrapolated to the strain axis, s~,,~, is 
given by 

0-0-  Po hiLG 
si~: = % + D 2KD 2 (10) 

and is a function of the system parameters K, D and 
G. When Equation I0 is substituted into Equation 9, 
we obtain 

Co - aim / - h i L t  ( l l ) 

Using the value of G/D obtained from the slope of the 
linear, long-time region of the creep curve, a plot of 
the quantity on the left-hand side of Equation 11 
against t should be linear with a slope equal to 
2KD/hiL). Equations 10 and 11 can then be solved 
simultaneously to calculate the values of K and D. 

3. V e r i f i c a t i o n  o f  t h e  m o d e l s  
3.1. Expe r imen ta l  m e t h o d s  
Spinal segments were harvested from adult mongrel 
canines. Discs from two different animals were used in 
the tests. The discs selected were from levels T1 l-T12 
to L6-,L7. Spinal segments were divided into groups of 
three adjacent discs, with each disc in a group tested 
at a different stress level. Isolated disc specimens were 
prepared by cutting transversely through the vertebral 
bones above and below the disc. These cuts were made 
parallel to the disc. The posterior articulating facets 
and bony processes were removed. The resultant test 
specimens consisted of a disc with approximately 
10 mm viable bone above and below. The area of the 
disc was determined by measuring the maximum and 
minimum diameters of the disc and applying the area 
formula for an ellipse. A correction factor was used to 
account for deviation of the disc from this idealized 
geometry [1]. Discs were enclosed in plastic to main- 
tain 100% relative humidity. Discs were used fresh or 
kept refrigerated at 4°C until tested. All were tested 
within 72 h of removal. Before testing, specimens were 
equilibrated at room temperature. The discs were kept 
sealed in plastic throughout the test. 

A servo-hydrauiic Instron 1331 mechanical testing 
machine was used. Specimens were placed between 
solid loading platens and preloaded to a stress of 
0.t M N m  -2. This tare stress was 5% or less of the 
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Figure 3 Creep data for all specimens tested at (a) 
2 M N m  -2 and (b) 7 M N m  2. 
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creep stress in any of  the tests. A stress of  2, 5, 7 or 
10 M N m  -2 was applied by driving the crosshead at a 
rate of  70 kN sec- 1 until the creep stress was achieved, 
then maintaining that stress for the 60min duration 
of the experiment. These stress levels were chosen 
because they fall within the linear region of the stress- 
strain curve of the disc in compression [1]. Displace- 
ment against time curves were recorded and converted 
to strain against time by normalizing to the height of  
the disc measured at the periphery at rest. Two of 
three disc specimens loaded to 1 0 M N m  -2 failed in 
creep. Data  from these tests were not considered in the 
following analysis. During the course of  the test no 
water was seen seeping through the outer surface of 
the disc. However, upon removing the specimens at 
the conclusion of the test, a mixture of water, blood 
and marrow was observed on the surfaces of  the 
loading platens. 

3.2. Results and discussion 
The data from creep experiments at two stress levels 
are shown in Figs 3a and b. Case I predicts a linear 
creep curve which is not observed experimentally. The 
experimental data do not differentiate between the 
models described in cases II and III.  Case I I I  is the 
more comprehensive model because it can account for 
a non-asymptotic creep curve and irreversible defor- 
mation of the disc following unloading. Data  for the 
typical creep experiment shown in Fig. 4 are plotted 
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according to case II (Equation 7) in Fig. 5 and accord- 
ing to case I I I  (Equation l 1) in Fig. 6. The osmotic 
pressure of  the disc, P0, as obtained from the literature, 
was assumed to be 0 . 2 M N m  -2 [9]. The thickness of  
the cartilage end-plates was determined from sagittal 
sections through the disc to be 0.3 mm. The system 
parameters K, D and G were calculated for cases II  
and I I I  at four stress levels, and the results are sum- 
marized in Table I. 

The contribution of the cancellous bone of the ver- 
tebral bodies to the permeability, K, was tested by 
increasing and decreasing the height of  the bone left 
attached to the disc specimen. In tests using bone 
heights of  7 and 12.5 mm, no significant change in the 
parameters K, D or G was observed. This supports the 
hypothesis that the cartilage end-plate is the structure 

T A B L E  I Analytical creep model parameters 

2 M N m  -2 5 M N m  -2 7 M N m  -2 1 0 M N m  2 

(n = 3) (n = 3) (n = 2) (n = 1) 

Permeability, K ( × 10 -17 m 4 N -1 sec -1) 

Case II 0.64 (0.02) 0.33 (0.03) 0.20 (0.01) 0.21 
Case III 0.85 (0.14) 0.39 (0.02) 0.27 (0.08) 0.26 

Strain-dependence parameter, D ( M N m  2) 
Case II 10.6 (0.5) 22.8 (4.8) 37.4 (2.1) 35.5 
Case II] 18.2 (0.9) 34.5 (13.0) 51.1 (4.2) 52.2 

Time-dependence parameter,  G ( x 10 -6 M N  m -2 sec-1 ) 
Case III 421 (56) 795 (360) 853 (4) 1609 
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Figure 4 Creep data for a typical specimen at 
7 M N m  -2. 
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that controls the flow of water from the disc during 
creep. 

The permeability, K, was higher in case I I I  than in 
case lI. For the case II analysis, not all of the creep 
curves levelled off after 60 min, so a~_ was taken as the 
strain at 60 min, when the experiment was terminated. 
I f  the experiment had been continued for longer, a 
larger value of a~ would probably have been found 
and this would have affected the value of the perme- 
ability constant obtained from the case II analysis. 
The permeabilities reported here are lower than the 
permeability of  articular cartilage, reported in the 
literature to be in the range (2 to 8) × 10 17m4N 
sec-~ [5]. This is at least in part  the result of  the lower 
water content of  end-plate cartilage compared with 
articular cartilage. End-plate cartilage was found to 
contain 60 to 65 wt % water as determined by freeze- 
drying of excised cartilage specimens. Adult articular 
cartilage is reported to be 85 wt % water at the super- 
ficial surface and decreases to 70wt % at the sub- 
chondral bone [10]. It has been shown in articular 
cartilage that permeability decreases with decreasing 
water content in a non-linear manner [11, 12]. 

Permeability in the disc was observed to decrease 
with the applied stress. This is also observed in articular 
cartilage, where it is attributed to compaction of the 
cartilage matrix. This compaction results in a decrease 
in the size and number of  pores available for water to 

flow through the cartilage. In the disc, it could mean 
that the assumption that the cartilage end-plate is 
incompressible may not hold at the stress levels tested 
or, alternatively, that the model proposed does not 
accommodate all of  the complexities of  water move- 
ment in and from the disc. 

The strain-dependence parameter,  D, was higher in 
case I I I  than in case II, due to the introduction of the 
time dependence parameter,  G, into the model. The 
value of D in case III  must be greater to compensate 
for this additional term. Both the strain- and the 
time-dependence parameters increased in magnitude 
with stress. The variation with time of the pressure in 
the disc, Pd,  is plotted according to case II (Equation 
4) and case III  (Equation 8) in Fig. 7 for two values of 
applied stress, 2 and 7 M N  m -2. The initial pressure is 
less than the applied stress by an amount  equal to the 
osmotic pressure of the disc. Initially Pd decreases 
more rapidly for case III  because the magnitude of 
the strain dependence, represented by the parameter  
D, is larger. At longer times the effect of  the time- 
dependence parameter  G c a u s e s  Pd for case III  to level 
off and the curves cross as the pressure must approach 
zero at long times for case II. 

The relative magnitude of the strain- and time- 
dependent stress terms in Equation 8 for the case III  
analysis varies with time, since the strain-dependent 
term initially increases rapidly then approaches an 
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asymptote whereas the time-dependent term increases 
linearly. Although the magnitude of the strain- 
dependence is larger throughout the duration of the 
experiment, its relative influence is reduced at longer 
times as the effect of the time-dependence parameter 
in.creases, as shown in Fig. 8. 

The case II analytical model was tested with stress- 
relaxation data at a strain of 0.15 obtained previously 
on identically prepared disc specimens [1]. Values of 
K, D, e0 and e~ for creep at 2, 5 and 7 MN m 2 were 
used to calculate the time at which e(t) was equal to 
0.15 from Equation 7 of the case II creep model. These 
values of t lie on the stress-relaxation curve for a 
constant strain of 0.15 in Fig. 9 and thus provide 
confirmation that the proposed model describes the 
stress-relaxation response of the disc as well as the 
creep response. This indicates that the same mechanism 
is responsible for the behaviour of the disc under both 
loading conditions. 

4. V iscoelast ic  models  
4.1. Three-parameter model 
Viscoelastic models composed of ideal elastic and 
viscous components are frequently used to describe a 
creep response such as that seen in the disc. These 
models cannot address physical mechanisms respon- 
sible for time-dependent behaviour in complex hier- 
archical systems such as the intervertebral disc. 
However, comparisons between these models and the 
analytical models of the disc do reveal the relationship 

Figure 6 Creep data from Fig. 4 plotted according 
to case III (Equation 11). 

I I 
50 60 

between the elements of the viscoelastic models and 
the system parameters K, D and G. 

The relationship between strain and time in the 
three-parameter creep model (Fig. 10a) is given by 

oo[ ( 
8(0 E, + E22 1 - exp - (12) 

The creep time constant is obtained from the slope 
when Equation 12 is plotted in the form 

ln[(Cr~ % )/a~] ___ _t (13) - + ~ - ~(t) 

The three-parameter viscoelastic model is equivalent 
to the case II flow model, since upon inspection 
Equation 12 has the same form as Equation 5. When 
the terms are equated, the modulus, E2, is related to 
the strain-dependence parameter D by 

E2 = Dao/(% - Po) (14) 

Equating the exponential terms in Equations 5 and 12, 
the creep time constant is related to both the per- 
meability, K, and the strain-dependence parameter, D: 

r = h iL /2KD (15) 

4.2. Four -pa rame te r  model  
The relationship between strain and time in the four- 
parameter creep model (Eig. 10b) is given by 

a(t) = E~ + ~ 1 - exp - + - - t ( 1 6 )  
r/1 

7 -  
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Figure 8 Ratio of  the magnitudes of the strain- and 
time-dependence terms for case III as a function of 
time. 

At long times the exponential term in Equation 16 
becomes negligible and the creep curve is linear: 

(70 (70 O'0 
e(t) = E--~ + ~~_ + --rh t (17) 

Since ao/E1 = e0, the intercept of the linear, long- 
time region of the creep curve with the strain axis is 
ao/E2 + eo and the slope is a0/rh. 

The creep time constant is obtained by plotting 
Equation 16 in the form 

- = - ( 1 8 )  
r h T 

Comparison of Equations 16 and 9 reveals that the 
four-paramenter viscoelastic model is equivalent to 
the case III flow model. By equating terms, the modu- 
lus, E2, of  the four-parameter model is related to 
the strain-dependence parameter D and the time- 
dependence parameter G by 

2KDZ ao 
E2 = (19) 

2KD((70 - P0) - hiLG 

Equating the exponential terms of Equations 9 and 16, 
the time constant T is related to both the permeability 
K and the strain-dependence parameter D: 

= h~L/2KD (20) 

The viscosity, rh, which represents the non-recoverable 
strain, is related to the strain- and time-dependence 
parameters by 

I l l  = aoD/G (21) 
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Figure 9 Stress relaxation data for a compressive strain of  0.15 from 
[I] and calculated points from the creep model assmning case II 
behaviour. 

4.3. Results and d iscussion 
Values for the elements of the three- and four- 
parameter models were calculated from experimental 
data using plots of the form given by Equations 13 and 
l 8 and are summarized in Table II. The time constant 
T is independent of the applied stress in both the three- 
and the four-parameter models, which means from 
Equations 15 and 20 that the product KD is a constant 
for both cases II and Ill. The viscoelastic parameters 
El, E2 and t/l all increase with applied stress with the 
possible exception of r/1 from the single 1 0 M N m  2 
test. Comparison of a typical creep experiment with 
the calculated curves for the three-parameter model 
(Equation 12) and the four-parameter model (Equation 
16) shows that both models fit the data (Fig. 11). 
The four-parameter model is more attractive because 
it can accommodate an irreversible component of 
deformation. 

Kaleps and co-workers fitted a three-parameter vis- 
coelastic model to experimental creep data from inter- 
vertebral discs harvested from rhesus monkeys and 
humans [13, 14]. They employed an interpolation and 
optimization scheme to obtain values for E~, E 2 and 
r h . All of the human discs were loaded at stress levels 
well below those employed in this study (0.1 to 
0.4 MN m 2). However, a limited number of monkey 
specimens were loaded at levels of 2 M N m  2, and 
these results are compared in Table III. The creep 
curve calculated with their values for a three-parameter 
model has a much higher initial strain and is a flatter 
creep curve. These differences probably result from 

(7 G 

O" G 

(a) (b) 

Figure 10 Viscoelastic solid models: (a) three-parameter model and 
(b) four-parameter model. 
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T A B  L E I I Viscoelastic model parameters 

2 M N m  -2 5 M N m  2 7 M N m - 2  10MNm-2  
(n=3) (n=3) (n=2) (~= 1) 

Three-parameter model elements 
z (sec) 1416 (88) 1342 (94) 1224 (I33) 1297 
E~ ( M N m  -2) 22.4 (2.5) 37.5 (4.4) 44.9 (0.l) 63.3 
E 2 (MN m -2) 11.8 (0.6) 23.8 (5.0) 38.6 (2.2) 36.2 

Four-parameter model elements 
z (sec) 544 (191) 811 (268) 703 (246) 719 
E~ ( M N m  2) 22.4 (2.5) 37.5 (4,4) 44.9 (0.1) 63.3 
E 2 ( M N m  -2) 23.7 (1.2) 41.0 (15.8) 57.6 (2.8) 60.5 
r/i ( x 103 MN secm -2) 78.5 (18.6) 226 (39) 419 (33) 324 

TA B LE I I I Comparison of viscoelastic model parameters for 
% = 2 M N m  2 

Present work [13, 14] 

(sec) 1416 (88) 4812 (1761) 
E~ (MN m -2) 22.4 (2.5) 9.7 (4.7) 
E 2 (MN m -2) 11.8 (0.6) 8.7 (2.5) 

species differences as well as from specimen preparation 
and test conditions. In their work discs were deep 
frozen before testing, and the posterior articulations 
were left intact during the test. It is known that freez- 
ing the disc before testing causes ice crystals to form 
in the disc structure, which can disrupt the collagen 
architecture of the disc and alter the water content 
[t 5]. The presence of intact articulating facets would 
alter the configuration of the compressive toad, par- 
ticularly at higher strain, from a uniaxial compression 
to a combination of compression and shear stresses. 
The effect of varying the applied compressive stress on 
the values for elements in the viscoelastic model is also 
addressed in the Kaleps data. Although the variability 
in results between discs at similar stress levels is high, 
the trends observed are similar to those in this study. 
Specifically, the moduli increase with increasing 
applied stress, whereas the time constant appears to 
remain essentially constant. 

5. Conclusions 
Models for the compressive creep response of inter- 
vertebral disc have been developed. These are based 
on previous observations that the time-dependent 
mechanical response arises from the transport of 

water out of the disc through the cartilage end-plates 
into the vertebrae. Assuming that the driving force for 
water transport is a pressure gradient across the car- 
tilage between the disc and the vertebral bodies caused 
by an external stress, the following conclusions can be 
drawn. 

1. The experimental creep data fit models which 
consider the strain-dependence or strain- and time- 
dependence of the pressure in the disc. System par- 
ameters obtained from analysis of creep data also 
correctly predict the stress relaxation. 

2. These models are analogous to the three- and 
four-parameter viscoelastic models, but contain 
elements directly relatable to the physical structure. 

3. The permeability of the end-plate cartilage cal- 
culated from these models is slightly lower than that 
reported for articular cartilage; differences in the 
water content of the cartilages may account for this. 
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